Stress-driven migration of simple low-angle mixed grain boundaries

نویسندگان

  • A. T. Lim
  • M. Haataja
  • W. Cai
چکیده

We investigated the stress-induced migration of a class of simple low-angle mixed grain boundaries (LAMGBs) using a combination of discrete dislocation dynamics simulations and analytical arguments. The migration of LAMGBs under an externally applied stress can occur by dislocation glide, and was observed to be coupled to the motion parallel to the boundary plane, i.e. tangential motion. Both the migration and tangential velocities of the boundary are directly proportional to applied stress but independent of boundary misorientation. Depending on the dislocation structure of the boundary, either the migration or tangential velocity of the boundary can switch direction at sufficiently high dislocation climb mobility due to the dynamics of dislocation segments that can climb out of their respective slip planes. Finally, we show that the mobility of the LAMGBs studied in this work depends on the constituent dislocation structure and dislocation climb mobility, and is inversely proportional to misorientation. 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transition between Low and High Angle Grain Boundaries

Institut für Metallkunde und Metallphysik, RWTH Aachen, 52056 Aachen, Germany Carnegie Mellon University, Pittsburgh PA 15213, USA Abstract The migration of planar, symmetric tilt grain boundaries with different tilt axes was investigated. The driving force for the grain boundary migration was due to an external mechanical stress field. Low as well as high angle grain boundaries can move under ...

متن کامل

Experimental observations of stress-driven grain boundary migration.

In crystalline materials, plastic deformation occurs by the motion of dislocations, and the regions between individual crystallites, called grain boundaries, act as obstacles to dislocation motion. Grain boundaries are widely envisaged to be mechanically static structures, but this report outlines an experimental investigation of stress-driven grain boundary migration manifested as grain growth...

متن کامل

The role of grain boundaries on fatigue crack initiation – An energy approach

In this paper, we construct a model for prediction of fatigue crack initiation based on the material’s microstructure. In order to do so, the energy of a persistent slip band (PSB) is monitored and an energy balance approach is taken, in which cracks initiate and the material fails due to stress concentration from a PSB (with respect to dislocation motion). These PSBs are able to traverse low-a...

متن کامل

Low-angle grain boundary migration in the presence of extrinsic dislocations

We investigated the migration of a symmetric tilt, low-angle grain boundary (LAGB) under applied shear stress in the presence of extrinsic dislocations. The results demonstrate that there is a threshold stress for the LAGB to depin from extrinsic dislocations. Below the threshold stress, the LAGB remains immobile at zero dislocation climb mobility, while for finite climb mobilities, it migrates...

متن کامل

Improve sensitization and corrosion resistance of an Al-Mg alloy by optimization of grain boundaries

The sensitization and subsequent intergranular corrosion of Al-5.3 wt.% Mg alloy has been shown to be an important factor in stress corrosion cracking of Al-Mg alloys. Understanding sensitization requires the review of grain boundary character on the precipitation process which can assist in developing and designing alloys with improved corrosion resistance. This study shows that the degree of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011